1079 延迟的回文数
给定一个 k+1 位的正整数 N,写成 a**k⋯a1a0 的形式,其中对所有 i 有 0≤a**i<10 且 a**k>0。N 被称为一个回文数,当且仅当对所有 i 有 a**i=a**k−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过 1000 位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
A + B = C
其中 A
是原始的数字,B
是 A
的逆转数,C
是它们的和。A
从输入的整数开始。重复操作直到 C
在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.
;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.
。
输入样例 1:
tex
97152
97152
输出样例 1:
tex
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
tex
196
196
输出样例 2:
tex
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
Solution:
java
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigDecimal;
import java.math.BigInteger;
public class Main {
public static String reverse(String s) {
StringBuilder sb = new StringBuilder();
sb.append(s);
return sb.reverse().toString();
}
public static boolean isPalindromic(String s) {
int len = s.length();
int end = len / 2;
for (int i = 0; i < end; i++) {
if (s.charAt(i) != s.charAt(len - i - 1)) {
return false;
}
}
return true;
}
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String num = in.readLine();
int cnt = 0;
while (cnt < 10 && !isPalindromic(num)) {
String x = reverse(num);
BigInteger b1 = new BigInteger(num);
BigInteger b2 = new BigInteger(reverse(num));
BigInteger result = b1.add(b2);
System.out.printf("%s + %s = ", num, x);
System.out.println(result);
num = result.toString();
cnt++;
}
if (cnt >= 10)
System.out.println("Not found in 10 iterations.");
else {
System.out.println(num + " is a palindromic number.");
}
}
}
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigDecimal;
import java.math.BigInteger;
public class Main {
public static String reverse(String s) {
StringBuilder sb = new StringBuilder();
sb.append(s);
return sb.reverse().toString();
}
public static boolean isPalindromic(String s) {
int len = s.length();
int end = len / 2;
for (int i = 0; i < end; i++) {
if (s.charAt(i) != s.charAt(len - i - 1)) {
return false;
}
}
return true;
}
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String num = in.readLine();
int cnt = 0;
while (cnt < 10 && !isPalindromic(num)) {
String x = reverse(num);
BigInteger b1 = new BigInteger(num);
BigInteger b2 = new BigInteger(reverse(num));
BigInteger result = b1.add(b2);
System.out.printf("%s + %s = ", num, x);
System.out.println(result);
num = result.toString();
cnt++;
}
if (cnt >= 10)
System.out.println("Not found in 10 iterations.");
else {
System.out.println(num + " is a palindromic number.");
}
}
}